- 投稿日:2019-08-11T20:21:20+09:00
Optuna + MYSQL on Docker
目的: Optunaを分散環境で動かす
完成したコードはここにあります。
手順
- docker 及び docker-composeの準備
- optunaのsimple exampleを書く
注意:mysqlのパスワードを直書きしたりしてるのでセキュリティ的によくないです
Dockerで環境構築
FROM pytorch/pytorch:1.1.0-cuda10.0-cudnn7.5-runtime ARG PYTHON_VERSION=3.6 RUN apt-get update RUN apt-get install -y wget RUN apt-get -y install language-pack-ja-base language-pack-ja ibus-mozc RUN update-locale LANG=ja_JP.UTF-8 LANGUAGE=ja_JP:ja ENV LANG ja_JP.UTF-8 ENV LC_ALL ja_JP.UTF-8 ENV LC_CTYPE ja_JP.UTF-8 RUN pip install -U pip RUN pip install numpy matplotlib bokeh holoviews pandas tqdm sklearn joblib nose pandas tabulate xgboost lightgbm optuna nose coverage RUN pip install torch torchvision # install tensorboardX to /tmp for hparams in tensorboardX RUN pip install -e git+https://github.com/eisenjulian/tensorboardX.git@add-hparam-support#egg=tensorboardX --src /tmp RUN pip install tensorflow==1.14.0 RUN pip install future moviepy # mysqlclient RUN apt-get install -y libssl-dev RUN apt-get update RUN apt-get install -y python3-dev libmysqlclient-dev RUN pip install mysqlclient可視化のためにtensorboardもいれた
docker-compose.ymlversion: '2.3' services: optuna_pytorch: build: ./ container_name: "optuna_pytorch" working_dir: "/workspace" ports: - "6006:6006" - "8888:8888" #runtime: nvidia volumes: - .:/workspace tty: true db: image: mysql:5.7 container_name: 'db' ports: - "3306:3306" volumes: # 初期データを投入するSQLが格納されているdir - ./db/mysql_init:/docker-entrypoint-initdb.d # 永続化するときにマウントするdir - ./db/mysql_data:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: root MYSQL_USER: root MYSQL_ALLOW_EMPTY_PASSWORD: 'yes' MYSQL_DATABASE: optunaMYSQL_DATABASE: optuna を用意しておくのがポイント (optuna_pytorchからはmysqlはdbというドメインで参照可能になっている)
optunaのコード
main.pyfrom torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch.utils.data.dataset import Subset import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import optuna from tensorboardX import SummaryWriter #optuna.logging.disable_default_handler() from tqdm import tqdm_notebook as tqdm BATCHSIZE = 128 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_set = MNIST(root='./data', train=True, download=True, transform=transform) subset1_indices = list(range(0,6000)) train_set = Subset(train_set, subset1_indices) train_loader = DataLoader(train_set, batch_size=BATCHSIZE, shuffle=True, num_workers=2) subset2_indices = list(range(0,1000)) test_set = MNIST(root='./data', train=False, download=True, transform=transform) test_set = Subset(test_set, subset2_indices) test_loader = DataLoader(test_set, batch_size=BATCHSIZE, shuffle=False, num_workers=2) classes = tuple(np.linspace(0, 9, 10, dtype=np.uint8)) h_params = {} print('finish data load') EPOCH = 10 writer = SummaryWriter() class Net(nn.Module): def __init__(self, trial): super(Net, self).__init__() self.activation = get_activation(trial) self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv1_drop = nn.Dropout2d(p=trial.suggest_uniform("dropout_prob", 0, 0.8)) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = self.activation(F.max_pool2d(self.conv1(x), 2)) x = self.activation(F.max_pool2d(self.conv1_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = self.activation(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test(model, device, test_loader): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() return 1 - correct / len(test_loader.dataset) def get_optimizer(trial, model): optimizer_names = ['Adam', 'MomentumSGD'] optimizer_name = trial.suggest_categorical('optimizer', optimizer_names) h_params['opt_name'] = optimizer_name weight_decay = trial.suggest_loguniform('weight_decay', 1e-10, 1e-3) if optimizer_name == optimizer_names[0]: adam_lr = trial.suggest_loguniform('adam_lr', 1e-5, 1e-1) h_params['adam_lr'] = adam_lr optimizer = optim.Adam(model.parameters(), lr=adam_lr, weight_decay=weight_decay) else: momentum_sgd_lr = trial.suggest_loguniform('momentum_sgd_lr', 1e-5, 1e-1) h_params['momentum_sgd_lr'] = momentum_sgd_lr optimizer = optim.SGD(model.parameters(), lr=momentum_sgd_lr, momentum=0.9, weight_decay=weight_decay) return optimizer def get_activation(trial): activation_names = ['ReLU', 'ELU'] activation_name = trial.suggest_categorical('activation', activation_names) h_params['activation'] = activation_name if activation_name == activation_names[0]: activation = F.relu else: activation = F.elu return activation def objective_wrapper(pbar): def objective(trial): global writer writer = SummaryWriter() device = "cuda" if torch.cuda.is_available() else "cpu" model = Net(trial).to(device) optimizer = get_optimizer(trial, model) writer.add_hparams_start(h_params) for step in range(EPOCH): train(model, device, train_loader, optimizer) error_rate = test(model, device, test_loader) writer.add_scalar('test/loss', error_rate, step) trial.report(error_rate, step) if trial.should_prune(step): pbar.update() raise optuna.structs.TrialPruned() pbar.update() writer.add_hparams_end() # save hyper parameter return error_rate return objective TRIAL_SIZE = 50 with tqdm(total=TRIAL_SIZE) as pbar: study = optuna.create_study(pruner=optuna.pruners.MedianPruner(), study_name='distributed-mysql', storage='mysql://root:root@db/optuna', load_if_exists=True) study.optimize(objective_wrapper(pbar), n_trials=TRIAL_SIZE, n_jobs=2) print(study.best_params) print(study.best_value) df = study.trials_dataframe() print(df.head) df.to_csv('result.csv')本質は
- optuna.create_study を作り
- trial.suggest_loguniform, trial.suggest_categorical で探索の候補を決め
- study.optimize で探索を実行する
あたりである。
とくにcreate_studyはDBの指定とpruningのルールも指定するところなので重要
documentをみるとよい枝刈りのルールも確認しておくと良いここ
使い方
run
# create env docker-compose up -d docker exec -it optuna_pytorch /bin/bash # run python main.py # remove env exit docker-compose down最適化の過程はmysqlに記録されるのでmysqlが参照できる場所でmain.pyを動かせば分散環境での最適化になる!
結果をtensorboardで確認
# on host docker exec -it optuna_pytorch /bin/bassh tensorboard --logdir runs # access to http://localhost:6006/#hparams on browser枝刈りが行われてるのがわかる
結果をmysqlから確認
# on host # install mysql brew install mysql # check tables on Optuna db mysql -h 127.0.0.1 --port 3306 -uroot -proot -D optuna -e 'show tables' # check results on Optuna db mysql -h 127.0.0.1 --port 3306 -uroot -proot -D optuna -e 'select * from trials'結果の削除
mysql -h 127.0.0.1 --port 3306 -uroot -proot -D optuna -e 'drop database optuna'